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Abstract: Curcumin, a polyphenol extracted from Curcuma longa in 1815, has gained attention from
scientists worldwide for its biological activities (e.g., antioxidant, anti-inflammatory, antimicrobial,
antiviral), among which its anticancer potential has been the most described and still remains
under investigation. The present review focuses on the cell signaling pathways involved in
cancer development and proliferation, and which are targeted by curcumin. Curcumin has been
reported to modulate growth factors, enzymes, transcription factors, kinase, inflammatory cytokines,
and proapoptotic (by upregulation) and antiapoptotic (by downregulation) proteins. This polyphenol
compound, alone or combined with other agents, could represent an effective drug for cancer therapy.
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1. Introduction

The most representative polyphenol component extracted from the rhizomes of Curcuma longa
(known as turmeric) is curcumin. It was isolated for the first time in 1815 by two scientists, Vogel and
Pelletier, from Harvard College Laboratory. Since then, the scientific interest towards curcumin has
increased and, more and more, its health benefits have been discovered.

Curcumin belongs to a chemical class of polyphenols; it is known as diferuloylmethane and its
IUPAC name is (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, with a chemical
formula of C21H20O6 and a molecular weight of 368.38. The chemistry of curcumin is at the basis of its
several biological activities.

The therapeutic benefits of curcumin have been demonstrated in multiple chronic diseases:
inflammation, arthritis, metabolic syndrome, liver disease, obesity, neurodegenerative diseases
and, above all, in several cancers. As a result of a recent bibliographic research, we found 12,595
papers on curcumin (1924–2018) and 4738 (1983–2018) of which were on curcumin and cancer;
that means 37% of the published papers on curcumin has cancer as the major targeted disease
(https://www.ncbi.nlm.nih.gov/pubmed). However, the abovementioned activities seem to be due
mostly to the antioxidant and anti-inflammatory effects of curcumin.

Cancer is one of the primary causes of death in industrialized countries [1]. In recent years,
the early diagnosis and increase in therapeutic options has reduced the death rate. However, the growth
of drug-resistant cancers necessitates the search for innovative and more effective drugs [2]. It is worth
noting that cancer cells are characterized by deregulated signaling pathways involving proliferation,
apoptosis, and angiogenesis [3,4].

In this scenario, curcumin represents a promising candidate as an effective anticancer drug to be
used alone or in combination with other drugs. It affects different signaling pathways and molecular
targets involved in the development of several cancers (Table 1).
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Table 1. Main molecular targets of curcumin.

Molecular Targets of Curcumin

Transcription Factors Growth Factors Inflammatory
Cytokines Apoptotic Proteins Protein Kinases Receptors Cell Survival/

Proliferative Proteins

ERG-1, ERE, STAT-1, STAT-3,
STAT-4, STAT-5, Notch-1, NF-κB,

PPAR-γ, WTG-1, β-catechin

FGF, VEGF, TGF-β1,
TF, CTGF, EGF

Prostaglandine, TNF,
IFN, interleukins,

COX-2, MCP-1, MaIP

Cytochrome c, PARP, Bax,
Caspase-3, Caspase-8,

Caspase-6, Caspase 10, FADD

MAPK, EGFR, ERK,
IL-1 RAK, PKA/B/C,
Bcr-Abl, JNK, IKK

HER-2, CXCR4,
EGFR, H2R, IL-8R,

LDL-R, ITPR

Survivin, Mcl-1, Bcl-xL,
cIAP-1, cIAP-2, Bcl-2,

cMyc, PCNA, cyclin D1

ERG, ETS (erythroblast transformation-specific)-related gene; ERE, Estrogenresponse elements; STAT, Signal transducer and activator of transcription; NF-κB, Nuclear factor kappaB;
PPAR-γ-Peroxisome proliferator-activated receptors-γ; FGF, Fibroblast growth factors; VEGF, Vascular endothelial growth factor; TGF, Transforming growth factor; TF, Tissue factor; CTGF,
Connective-tissue growth factor; EGF, Epidermal growth factor; TNF, Tumor necrosis factor; IFN, Interferon; COX-2, Cyclooxygenase-2; MCP-1, Monocyte chemotactic protein-1; PARP,
Poly (ADP-ribose) polymerase; FADD, Fas-associated protein with death domain; MAPK, Mitogen-activated protein kinase; EGFR, Epidermal growth factor receptor; ERK, Extracellular
signal-regulated kinase; IL-1 RAK, Interleukin-1 receptor-associated kinase; PKA/B/C, Protein kinase A/B/C; JNK, c-Jun amino-Terminal kinase; IKK, IκB kinase; CXCR4,C-X-C chemokine
receptor type 4; EGFR, Epidermal growth factor receptor; H2R, Histamine H2 receptor; LDL-R, Low-density lipoprotein receptor; ITPR, Inositol 1,4,5-triphosphate receptors; Bcl-xL B-cell
lymphoma-extra large; cIAP, Cellular inhibitor of apoptosis protein; Bcl-2, B-cell lymphoma-2; PCNA, Proliferating cell nuclear antigen.
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The present review collects the most recent studies on the actions of curcumin in the prevention
and treatment of different types of cancers.

Immunomodulatory Effects of Curcumin

Many evidence suggest that the disorder of inflammatory pathways play a key role in cancer
development [5].

The inflammation process induces an increased production of pro-inflammatory molecules such
as cytokines, ROS, cyclooxygenase (COX-2), transcription factors including nuclear factor κB (NF-κB),
protein kinases B (AKT), activator protein 1 (AP1), signal transducer and activator of transcription 3
(STAT3), causing the initiation and development of cancer [6,7].

Curcumin exerts its immunomodulatory ability by interacting with several immune mediators,
hence its anticancer property.

Nuclear factor κB is a pro-inflammatory transcription factor that modulates the expression of
different proteins—such as cytokines interleukin (IL)-1, IL-2, and interferon-γ (IFNγ)—involved
in multiple cell signaling pathways associated with cancer progression and inflammation [8].
Phosphorylated NF-κB binds DNA and starts the transcription of oncogenes which block apoptosis
and initiates cellular proliferation and angiogenesis. Curcumin suppress NF-κB activity by inhibiting
the phosphorylation by I kappa B kinase (IκB) and impeding nuclear translocation of the NF-κB
p65 subunit.

Similarly, the transcriptional factor AP-1 (Activator Protein-1), known to be related to anti-apoptotic,
mitogenic, and pro-angiogenic genes, is downregulated by curcumin. Indeed, curcumin is reported
to exert anticancer properties in different in vitro models through the inhibition of AP-1 and NF-κB
factors [9].

One member of the STAT family, STAT3, is described as a common target for several signaling
pathways regulating oncogenes, as well as modulating the transduction of pro-inflammatory cytokines
and growth factors [10]. This factor contributes to the growth and survival of the cell, increasing the
expression of anti-apoptotic proteins such as Bcl-2 and Bcl-xL, thereby blocking apoptosis. Several
factors, such as IL-6, as well as EGFR, PDGF, leukemia inhibitory factor (LIF), oncostatin M, and the
ciliary neurotrophic factor (CNTF) family of cytokines, are reported to be STAT3 activators. Moreover,
STAT3 is reported to be a molecular target of curcumin in several tumors, both directly and indirectly
by inhibition of IL-6 [11–13].

In addition to the abovementioned transcriptional factors, pro-inflammatory cytokines—such as
tumor necrosis factor alpha (TNF-α) and interleukins—have a notable role both in the inflammatory
process and cancer disease. Tumor necrosis factor alpha activates NF-κB, then inflammatory genes
(5-LOX, COX-2), inflammatory cytokines, molecules that adhere to cells, and inducible nitric oxide
synthase (iNOS) are expressed. Therefore, the transcription of TNF-α and, thus, the expression of
inflammatory genes are blocked by curcumin [9].

The transcriptional factors NF-κB and AP-1 are also regulated by protein kinases (IκB kinases,
MAPKs, and ERK1/2), hence their modulation is a strategy in cancer control and prevention. There is
some evidence for the ability of curcumin to inhibit protein kinases inducing apoptotic activity [14].
In addition, curcumin exerts its anticancer activity by acting on the level of cyclin D1 that is an important
regulator of cell cycle progression and can act as a transcriptional co-regulator. Indeed, high levels of
cyclin D1 has been related to the development and progression of cancer. The suppression of cyclin D1
by curcumin occurs through NF-κB inhibition [15].

However, the immunomodulatory property of curcumin is exerted not only towards molecular
targets, but also cellular components such as macrophages, dendritic cells, and both T and B
lymphocytes [16].
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2. Breast Cancer

Nowadays, breast cancer is the most widespread malignant tumor among the female adult
population. It is the leading cause of death due to the presence of cancer in women around the
world [17]. Although the best approach to enhancing breast cancer outcomes and survival remains
early detection, the use of different drugs is still an effective treatment for breast cancer. Because more
than 70% of breast cancer cases are estrogen receptor (ER) positive type, antiestrogens are often used
as the main treatment. However, growing evidence has shown that the combination of different drugs
represents the best strategy in breast cancer management.

In the proliferation of breast cancer cells, NF-κB—the proinflammatory transcription factor—plays
a key role. It regulates more than 500 different genes and governs the expression of proteins involved
in cellular signaling pathways, resulting in the development of cancers and inflammation. Compounds
able to interact with NF-κB, by its inhibition, may be used in cancer therapy. Curcumin displayed the
ability to affect the breast cancer cell proliferation and invasion by downregulating the NF-κB inducing
genes [18,19].

Another target that acts on the proliferation of breast cancer cells is the human epidermal growth
factor receptor 2 (HER2), a tyrosine kinase (TK) receptor belonging to EGFR family. The HER2 is
considered as a drug target for cancer therapy since its overexpression is involved in the development
of many types of cancer [20]. Curcumin, alone or in combination with its analogues, may inhibit
breast cancer cell lines though inhibiting of HER2-TK [21]. Its suppressing action towards HER2 was
improved in selectivity by immune-liposome encapsulation [22].

The alterations (mutation and amplification) in the protein kinase B, named Akt, are related
to carcinogenesis [23]. Together with Akt, mTor (kinase) interfered in the control of cancer cell
growth and proliferation [24]. In breast cancer cells, curcumin downregulated Akt protein in a dose-
and time-dependent manner, and induced autophagy and suppression of the ubiquitin-proteasome
pathway [25]. Moreover, it has been hypothesized that the apoptotic and autophagy abilities of
curcumin in breast cancer cells are conducted by blocking the PI3K/Akt signaling pathway [26].
The apoptotic effect of curcumin has also been observed after treatment of MCF-7 cells with curcumin
plus PI3K inhibitor, suggesting a synergistic effect [27].

Curcumin is also able to interfere with the cell signaling pathway of EGFR, a family of receptor
tyrosine kinases, that is reported to be associated with the proliferation, adhesion, migration,
and differentiation of cancer cells [28,29]. Therefore, modulation of EGFR represents a good strategy
for cancer therapy. Curcumin inhibited the growth and proliferation of breast cancer cells by reducing
EGFR signaling and decreasing EGFR and Akt levels [30,31].

Curcumin exerts its chemo-preventive and antiproliferative capacities by means of modulation
of the transcription factor Nrf2, which regulates different genes for proteins responsible for the
detoxification of electrophiles and ROS, as well as the elimination or restoration of some of their
damaged products [32,33].

Antiproliferative abilities of curcumin are estrogen dependent in ER (estrogen receptor)-positive
MCF-7 breast cancer cells. Indeed, it represses the expression of ER in downstream genes such as
pS2 and TGF-beta (transforming growth factor) in ER-positive MCF-7 cells, and this capacity is also
dependent on the presence of estrogen.

However, curcumin showed effective anti-invasive activities in vitro that are not estrogen
dependent in ER-negative MDA-MB-231 breast cancer cells. These interesting activities appeared to be
mediated through the downregulation of MMP-2 (matrix metalloproteinase) and the upregulation of
TIMP-1 (tissue inhibitor of metalloproteinase), two molecules involved in the regulation of cancer cell
invasion [34].

Recently, the potential of curcumin to modulate the expression of miRNAs (non-coding sequences
of 18–22 nucleotides involved in several diseases, including cancer) in breast cancer cells has been
reported [35]. Curcumin was able to affect the expression of oncogenic (miR-19a and miR-19b) and
tumor-suppressive miRNAs (miR-15a, miR-16, miR-34a, miR-146b-5p, and miR-181b) in breast cancer
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cells. As a consequence, the suppression of tumorigenesis and metastasis, and induction of apoptosis
were observed.

3. Lung Cancer

Lung cancer is a widespread tumoral disease and it is the major cause of cancer-related mortality
in men worldwide [36]. Depending on the stage and the tumor’s aggressiveness, the five-year survival
rate in populations with lung cancer varies from 4–17% [37]. Recently, much progress has been made
in regards to improving early diagnosis, lung cancer screening, and innovative therapies.

Curcumin exhibited its therapeutic efficiency in lung cancer treatment by means of the
downregulation of NF-κB in human lung cancer cell lines A549 and also by acting on the JAK2/STAT3
signaling pathway, inhibiting JAK2 activity [13,38].

Moreover, curcumin inhibited cell proliferation and induced apoptosis of human non-small cell
lung cancer cells via the upregulation of microRNA-192-5p and suppression of the PI3K/Akt signaling
pathway [39].

In lung tumor proliferation, neutrophil elastase (an important regulator of inflammatory processes)
and α1-antitrypsin (natural inhibitor of neutrophil elastase) play prominent roles in the inflammation
mechanism and curcumin repressed neutrophil elastase-induced tumor proliferation via upregulating
α1-antitrypsin expression in vitro and in vivo [40]. However, it has been reported that a novel
catanionic lipid nanosystem (CLN) incorporating curcumin (CCM) exhibited better cytotoxicity in
Lewis lung cancer (LLC) cells, increasing antiproliferative, proapoptotic, and anti-invasive activities
and induction of cell cycle arrest. The novel nanosystem caused apoptosis in LLC cells by CCM
through the PI3K/Akt/FoxO1/Bim cellular target [41].

Curcumin also exhibited its proapoptotic activity in lung adenocarcinoma cells by suppressing
expression of COX-2, EGFR, and extracellular signal-regulated kinase (ERK) 1/2 activities,
which correlated with elevated apoptosis and reduced survival of lung adenocarcinoma cells [42].
Another study discussed the consequences of curcumin treatment on erlotinib-resistant NSCLC cells.
Erlotinib was an EGFR-tyrosine kinase inhibitor (EGFR-TKI) and the combined treatment of curcumin
and erlotinib remarkably reduced tumor growth of erlotinib-resistant NSCLC cells in vivo [43]. The Wnt
family of signaling proteins are involved in different developmental events during embryogenesis
and they are also implicated in adult tissue homeostasis. The dysregulation of this signaling pathway
is often associated with several diseases, in particular cancer [44]. Curcumin was able to influence
the cellular progression in non-small cell lung cancer and induced G0/G1 phase arrest through MTA1
(metastasis-associated protein 1)-mediated inactivation of Wnt/β-catenin pathway [45]. An interesting
study reported the potential of curcumin in regulating the expression of miRNA, a portion of the
human genome sequence for non-coding sequences involved in different diseases, in particular, cancers.
In lung carcinoma cells, a reduction of miRNA-186 expression was detected after treatment with
curcumin [46]. The in vivo studies were accomplished in transgenic mice carrying the pulmonary
tumor producing human vascular endothelial growth factor A165 (hVEGF-A165). In Clara cells of the
lungs of transgenic mice, curcumin specifically suppressed hVEGF-A165 overexpression to normal.
Additionally, a reduction of Cyclin A and Cyclin B (proteins involved in the S to M phase transition)
was detected [47].

4. Hematological Cancers

Hematological tumors include different group of cancers that affect the blood, bone marrow,
and lymphatic systems. The most widespread categories are lymphoma, leukemia, and multiple
myeloma [48].

Leukemia is a cancer concerning the blood or bone marrow characterized by an anomalous
proliferation of blood cells. Curcumin has been found to suppress TNF-α-induced nuclear translocation
and DNA binding of NF-κB through suppression of IκBα phosphorylation and degradation in the
human myeloid ML-1a cells [49]. Moreover, curcumin exhibited apoptosis in B-cell chronic lymphocytic
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leukemia (CLL-B) via downregulation of STAT3, AKT, NF-κB, and X-linked inhibitor of apoptosis
protein (XIAP). It also upregulated the proapoptotic protein BIM [50,51].

The Wilms tumor 1 (WT1) gene acts both as an oncogene and as a tumor suppressor. It is involved
in the proliferation and vitality of different cancer cells. It was found to be highly expressed in
many leukemic cell lines and in patients with acute myeloid leukemia. Curcumin inhibited cell
proliferation and clonogenicity in the K562 cell line which expresses WT1 at a high level (mRNA and
protein)—depending on time and dose—through inhibition of the WT1 protein. It also caused cell
cycle arrest at the G2/M phase [52]. The WT1 expression inhibition exerted by curcumin was also
reported in patient leukemic cells [53]. In addition, another study reported that curcumin decreased
WT1 gene expression in both transcriptional and translational levels [54].

Curcumin also induced apoptosis through the activation of the JNK/ERK/AP1 pathways in human
acute monocytic leukemia THP-1 cells [55].

In chronic myelogenous leukemia (CML) cells, the anticancer properties of curcumin were exerted
by upregulating PTEN, one of the mutated or silenced tumor suppressors in human cancer, which is a
target of miR-21, a microRNA overexpressed in several cancers. Curcumin induced miR-21-mediated
modulation of the PTEN/AKT pathway causing the inhibition of leukemic cell growth, in vitro and
in vivo [56].

Lymphomas represent the fifth most common cancer and fifth primary cause of cancer mortality
in Western countries. Among them, lymphomas derived from B cells represent more than 80% of
diagnosed cases. These kinds of cancers represent clonal proliferations of lymphocytes that are mainly
organized according to their maturity (peripheral or mature versus precursor) and lineage (B cell, T cell,
and natural killer cell). The pathogenetic mechanisms involved in the development of lymphoma
define the classification of lymphoma and the subsequent clinical management of patients [57,58].

In human Burkitt’s lymphoma—a high-grade non-Hodgkin’s lymphoma (NHL)—curcumin
affected, by inhibition, the constitutive and radiation-induced expression of the PI3K/AKT pathway
and its downstream regulator NF-κB. This effect gave rise to apoptosis in three human Burkitt’s
lymphoma cell lines (i.e., Namalwa, Ramos, and Raji) that were treated with ionizing radiation. Hence,
curcumin could play an important role in radiotherapy of high-grade NHL by means of inhibition
of the PI3K/AKT-dependent NF-κB pathway [59]. The in vivo anticancer effects of curcumin on
human Burkitt’s lymphoma Raji cells has been reported in a xenograft mouse model through the
downregulation of oncogene c-Myc and the upregulation of apoptotic proteins [60].

It is reported that curcumin also affected interleukin-1 (IL-1α and IL-1β), a prototypic, potent,
multifunctional proinflammatory cytokine involved in tumor progression via expression of metastatic,
angiogenic genes, and growth factors. Curcumin reduced carcinogenesis by downregulating
proinflammatory cytokine interleukin-1 (IL-1α and IL-1β) via modulation of AP-1 and NF-IL6,
respectively, in lymphoma bearing mice [61].

Curcumin also repressed the growth of B lymphoma cells through suppression of the egr-1 gene
(known as nerve growth factor-induced protein A) expression, which affected the suppression of the
c-myc gene and the anti-apoptotic protein bcl-XL in BKS-2 cells (immature B cell lymphoma) [62].

Multiple myeloma (MM) is a systemic malignant disease of the blood—in most cases fatal—
characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow, leading
to the production of non-functional intact immunoglobulins or immunoglobulin chains. Curcumin
exerted its anticancer potential in multiple myeloma by acting on NF-κB and STAT3 cell signaling
pathways. Indeed, curcumin exhibited anticancer potency by means of suppression of IκB kinase and
its oral administration was reported to suppress NF-κB in PBMCs (peripheral blood mononuclear cells)
from multiple-myeloma patients [49,63].

Moreover, curcumin was able to inhibit IL-6-induced STAT3 phosphorylation and consequent
STAT3 nuclear translocation playing a key role in the suppression of MM proliferation [64]. In vitro
cultured U266 cells, curcumin was tested in combination with carfilzomib (CFZ, a cytotoxic
second-generation proteasome inhibitor). Results showed that curcumin significantly ameliorated
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in vitro cytotoxic of CFZ on U266 cells, enhanced CFZ induction of p53/p21 axis and apoptosis, deeply
reduced NF-κB nuclear accumulation in U266 cells. Then, curcumin may improve the therapeutic
efficacy of CFZ, and supply a mechanistic understanding of the antitumor effects of these drug
combinations involving activation of the p53–p21 axis and NF-κB inhibition [65].

In a recent paper, curcumin was reported to significantly inhibit the proliferation of MM cells,
inducing apoptosis, in a time- and concentration-dependent manner, through the inhibition of the
expression of EZH2 in RPMI8226 and U266 cell lines. Curcumin upregulated miR-101 and, subsequently,
a lower expression of EZH2 was observed. On the contrary, the expression of EZH2 induced lower
expression of miR-101. The results showed the effect and mechanism of curcumin on multiple myeloma
via EZH2–miR-101 regulatory feedback loop [66].

5. Cancer of Digestive System

5.1. Gastric Cancer

Gastric cancer is one of the prominent causes of mortality worldwide in men and women. It is often
diagnosed in the final stages because of the absence of symptoms in early stages of development [67,68].

Many studies reported the pharmacological efficiency of curcumin in the treatment of gastric
cancer. Curcumin exerted its antitumor action by means of inhibition of antiapoptotic proteins of the
Bcl-2 family and elevated the expression of p53, Bax, procaspases 3, 8, and 9 [69].

Curcumin caused dissipation of mitochondrial membrane potential (MMP) and the release of
cytochrome c into the cytosol of SGC-7901 cells eliciting apoptosis. Moreover, the downregulation of
Bcl-2 and upregulation of Bax that provoked the cleavage of caspase-3 and increased cleaved PARP
was also reported [70].

The strong antioxidant activity exhibited by curcumin by inhibition of ROS also contributed to
cancer chemoprevention [71].

The STAT3 pathway has been reported as another target of curcumin. Indeed, curcumin
downregulated pSTAT3 levels, survivin expression, and gastric cancer cell viability in a dose-dependent
manner. Besides, 5-fluorouracil in combination with curcumin showed a synergistic effect of survivin
and STAT3 levels resulting in enhanced cell death in gastric cancer cells [11].

It has been reported that curcumin significantly decreased the expression of cyclin D and inhibited
p21-activated kinase1 (PAK1) activity giving rise to the suppression of proliferation and invasion of
gastric cancer cells [72]. Really, it acted on cell cycle arrest at the G2/M phase in AGS cells via decreasing
cyclin D1 and increasing cyclin B1 in a dose-dependent manner [73].

In addition, curcumin has been reported to act on caspase-3 (mediator of apoptosis) by activation
and on the Akt/mTOR/p70S6 signal pathway by inhibition [74,75].

5.2. Colorectal Cancer

Colorectal cancer is one of the most widespread cancers, affecting men and women equally.
Because of its malignant features, patients rarely heal, and recurrence is common. In colorectal cancer,
curcumin exhibited its therapeutic action by affecting several cell signaling pathways.

Curcumin inhibited DMH (1,2-Dimethylhydrazine)-induced rat colorectal carcinogenesis and
the growth of the in vitro cultured HT 29 cell line by suppressing the PPARγ signal transduction
pathway [76]. In addition, curcumin also suppressed the expression of cyclooxygenase-2 (COX-2), p53,
and pre-mRNA processing factor 4B (Prp4B) [77,78].

The AMP-activated protein kinase (AMPK) pathway has gained more interest as an important
pathway involved in cancer control. Curcumin has been reported as an inhibitor of colorectal cancer
invasion by means of AMPK-induced inhibition of NF-κB, urokinase-type plasminogen activator (uPA)
activator, and matrix metalloproteinase-9 (MMP9) [79].

Curcumin has been reported as an agent able to prevent colorectal cancer proliferation by blocking
the cell cycle and accelerating apoptosis. It exerted this action affecting thymidylate synthase and its
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transcription factor E2F-1. This effect caused cell cycle inhibition via downregulation of NF-κB and
other survival pathways [80]. Besides, curcumin downregulated the kinase CDK2, leading to the G1
cell cycle [81].

In human colon cancer cells, curcumin significantly inhibited cell growth. Further, it also inducted
apoptosis through a mitochondria-mediated pathway. Curcumin induced the release of cytochrome c,
significantly increased Bax and p53, and showed a marked reduction of Bcl-2 and survivin in LoVo
cells [82].

In human colorectal cancer HCT116 and HT29 cells, curcumin downregulated the expression and
activity of hexokinase II (HKII) in a concentration-dependent manner and induced dissociation of
HKII from mitochondria, resulting in mitochondrial-mediated apoptosis [83].

Additionally, in colon cancer cells SW480, curcumin targeted the WNT/catechin pathway through
a decrease of miR-130a expression and exerting its anti-tumor activity by inhibition of cell proliferation
rather than promoting cell apoptosis [84]. Moreover, curcumin also targeted the miR-491/PEG10
pathway, thus inhibiting proliferation and inducing apoptosis of colon cancer cells [85].

5.3. Pancreatic and Hepatic Cancers

Pancreatic cancer is a very fatal type of cancer with a one-year survival rate of only 10–28%
and a five-year survival rate of around 7% [86,87]. Mutations in oncogenes and tumor suppressor
genes as well as alterations of different signaling pathways are involved in the initiation, promotion,
and progression of pancreatic cancer.

Curcumin has been shown to have an effect on pancreatic cancer cells’ vitality, in vitro and
in vivo, by means of inhibition of NF-κB, COX-2, CD-31, VEGF, and IL-8 [88,89]. In addition, curcumin
treatment also inhibited STAT3 activation in patients with pancreatic cancer [90].

In pancreatic cancer cells, curcumin has been reported to induce FoxO1 expression in pancreatic
cancer cells by acting on PI3K/Akt signaling, which caused cell cycle arrest and apoptosis induction [91].
Moreover, curcumin induced apoptosis by inhibition of PI3K/Akt signaling and upregulation of
PTEN [92].

Additionally, curcumin inhibited RelA–DNA binding, suppressed COX-2, EGFR, extracellular
signal-regulated kinase (ERK1/2), and Notch signaling, effecting elevated apoptosis and reduced
survival of pancreatic adenocarcinoma cells [42,93]. Moreover, curcumin downregulated miRNA-199a
and upregulated miRNA-22 including target genes SP1 and ESR1 [94].

In pancreatic cancer, cells often express Wilms tumor gene 1 (WT1). Curcumin treatment
influenced the expression of WT1 on mRNA, which resulted in significant downregulation. In addition,
co-treatment of curcumin with siRNA (small inhibitory RNA) targeting WT1 triggered an increase in
the inhibition of cell proliferation compared to curcumin-treated cells alone [95].

Hepatic cancer is one of the most common cancers with dismal prognosis and is the third highest
cause of cancer mortality worldwide [96].

Curcumin induced DNA damage to both the mitochondrial and nuclear genomes in human
hepatoma G2 cells. The study showed that low levels of curcumin did not induce DNA damage but
acted as an antioxidant agent in carcinogenesis. At high doses, curcumin imposed oxidative stress by
increasing ROS generation and lipid peroxidation and damaged DNA curcumin [97]. The treatment
of hepatoma cells with curcumin led to an increase of ROS that effected the histone acetyltransferase
(HAT), an enzyme controlling the state of histone acetylation in vivo. In particular, the exposure of
human hepatoma cells to curcumin caused a significant decrease of histone acetylation by acting on
ROS generation [98].

The Notch-1 signaling pathway is also targeted by curcumin. Indeed, it was reported that curcumin
damaged Notch-1 signaling within the Notch intracellular domain in the HEP3B, SK-Hep-1, and SNU449
cell lines. Moreover, curcumin exhibited protection against diethylnitrosamine (DENA)-induced
hyperplasia and HCC in rodents by decreasing expression of p21-Ras, P53, and NF-κB [99].
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In BALB/c mice treated with N-bis(2-hydroxypropyl) nitrosamine (DHPN), curcumin inhibited
liver adenoma formation and growth by enhancing the lipid peroxidation and antioxidant liver
enzymes [100].

In the highly invasive SK-Hep-1 cell line of human hepatocellular carcinoma, curcumin significantly
inhibited cellular migration and invasion of SK-Hep-1. The effect of curcumin was related to its
inhibitory action on MMP-9 (matrix metalloproteinase) secretion [101].

6. Other Cancers

The second most common type of cancer diagnosed in men is prostate cancer. In prostate cancer,
curcumin exhibited its therapeutic effects by modulating multiple cell signaling pathways.

In human androgen-independent (DU145) and androgen-dependent (LNCaP) prostate cancer
cell lines, curcumin decreased the expression of antiapoptotic genes Bcl2 and Bcl-xL, and induced
procaspase-3 and procaspase-8 leading to apoptosis. Treatment of cells with curcumin inhibited
both constitutive (DU145) and inducible (LNCaP) NF-κB activation, and potentiated TNF-induced
apoptosis [102].

Curcumin has been reported to abolish CAF (cancer-associated fibroblast)-induced invasion
and EMT (epithelial–mesenchymal transition), and inhibited ROS production and CXCR4 and IL-6
receptor expression through inhibiting MAOA/mTOR/HIF-1α (monoamine oxidase A/mammalian
target of rapamycin/hypoxia-inducible factor-1α) signaling, thereby supporting the therapeutic effect
of curcumin in prostate cancer [103].

In castration-resistant prostate cancer (CRPC) cells, the mixed treatment of curcumin with docetaxel
(DTX) and nelfinavir (NFR) caused significant suppression of phosphorylated-Akt and induction in
phosphorylated-eIF2α, which means an induction of ER stress leading to apoptosis. This study showed
the ability of curcumin to chemo-sensitize the CRPC cells to DTX therapy [104].

The combination of curcumin with β-phenylethyl isothiocyanate also affected the proliferation of
human prostate cancer PC-3 cells by inhibiting another signaling pathway, EGFR. Its inhibition led to
the inhibition of proliferation as well as the programmed death of prostate cancer cells [105].

Another study reported the antiproliferative potential of curcumin against prostate cancer cells
through modulation of the Nrf2 pathway [106] and nuclear β-catenin transcription activity, as well as
membrane β-catenin levels [107].

Curcumin also affected the prostate-specific antigen (PSA) by reducing the expression of AP-1,
cyclin D1, NF-κB, and cAMP response element-binding (CREB). In addition, curcumin has been
reported to inhibit androgen-receptor-dependent NKX3.1 expression by means of the modulation of
androgen receptors [108,109].

A recent study performed with human prostate cancer stem cells (HuPCaSCs) treated with
curcumin, reported the inhibition of in vitro proliferation and invasion as well as cell cycle arrest as a
consequence of the miR-145 overexpression in curcumin-treated HuPCaSCs [110].

However, curcumin also affected the expression of the miR-143/miR-145 cluster. Indeed,
in human prostate cancer cell lines LNCaP, DU145, and PC3, the curcumin pretreatment and the
miR-143 overexpression increased radiation-induced cancer cell growth inhibition and apoptosis.
In summary, curcumin could sensitize prostate cancer cells to radiation both by miR-143 activation and
miR-143-mediated autophagy inhibition [111].

The anticancer effect of curcumin, both alone and/or in combination with other compounds,
has also been reported in brain tumors. Bojko et al. (2015) [112] reported curcumin as a potent adjuvant
agent in the treatment of human brain cancer involving selective EGFR kinase inhibitors such as
tyrphostins AG494 and AG1478. Indeed, curcumin increased the cytostatic and/or cytotoxic potential
of AG494 and AG1478, and decreases in viability, stimulation of apoptotic processes, irreversible DNA
damage, and ROS were observed in the culture of glioblastoma cells treated with a mixture of curcumin
and tyrphostins [113].
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Additionally, curcumin interfered with the PI3K/Akt and NF-κB signaling pathways by
activation, downregulated Bcl-xL, and induced the mitochondrial dysfunction together with caspase-3
activation [114]. Besides, curcumin upregulated p53 expression, followed by induction of p21
WAF-1/CIP-1 and ING4 (inhibitor of growth, family 4) [115].

In bone fibrosarcoma cancer cells, curcumin also showed antitumor potential by interfering with
multiple cellular targets.

Curcumin induced apoptosis in fibrosarcoma cells by means of the downregulation of NF-κB,
IL-6, and IL-11, hence altering the modulatory effects of TGF-b (transforming growth factor beta).
Furthermore, curcumin inhibited Erk and Bcl2 expression, suppressed MMP-13 expression, and induced
apoptosis in bone cancer cell lines [115,116].

Head and neck cancers, most of which are squamous cell carcinomas (HNSCC), include cancers
of the oral cavity, pharynx, and larynx, and their incidence increases with high consumption of tobacco
and alcohol [117,118]. Many in vitro and in vivo studies report the efficiency of curcumin in the
management of head and neck cancers. In vitro studies performed on HNSCC cell lines described
their apoptosis after treatment with curcumin. Curcumin induced apoptosis by direct (pro-apoptotic
and anti-apoptotic gene expression) and indirect mechanisms (cell cycle arrest in G2/M phase and
increasing of sub-G1 cell population), by acting on different cellular targets (NF-κB, cyclin D1, Bcl-2,
NOS, COX-2, interleukins, TNF-a, and MMP-9) [119,120]. Combination chemotherapy using curcumin
together with other anticancer drugs (5-FU, cisplatin, doxorubicin) has been described as a good
strategy to improve the therapeutic approach in head and neck cancer management. Furthermore,
innovative systems (including nanoparticles, micelles, liposomes, and hydrogel) for drug delivery
could be adopted in the treatment of head and neck cancers [121,122].

Malignant mesothelioma (MM) is a primary tumor—usually involving pleural and peritoneal
spaces—which is extremely aggressive and lethal with scarce healing and successful treatment.
Asbestos exposure is the main cause of tumor development, but also radiation exposure and genetic
factors could give rise to malignant mesothelioma.

Because MM cancer cells exhibit multiple abnormal modulations of signaling cellular pathways,
a multifunctional drug like curcumin seems to be very efficient in MM treatment. In vitro
studies reported the anticarcinogenic properties of curcumin through the induction of pyroptosis
through activation of caspase-1 and increased release of high-mobility group box 1 (HMGB1).
Moreover, curcumin also downregulated levels of inflammasome-related gene expression involved in
inflammation, e.g., NF-κB, toll-like receptors (TLR), and IL-1β [123]. Curcumin has been reported to
induce autophagy in the ACC-MESO-1 human malignant pleural mesothelioma cell line increasing
LC3B-II/LC3B-I expression and inducing the formation of autophagosomes [124]. In other in vitro
models using human (H2373, H2452, H2461, and H226) and murine (AB12) malignant pleural
mesothelioma cells, curcumin increased levels of proapoptotic proteins (Bax), stimulated PARP cleavage,
and induced apoptosis. Apoptosis induction was also observed in vivo after oral administration of
curcumin at a dose of 500 mg/kg [125].

7. Bioavailability of Curcumin

Despite the good prospective for curcumin in the management of cancer diseases, its clinical
development is limited because of its scarce bioavailability and low aqueous solubility. In clinical trials,
it was reported that curcumin given orally at a dose of 8 g/day in humans, a rapid transformation into
metabolites occurred resulting in a low level of free curcumin in plasma (<2.5 ng/mL) [126].

Many efforts have been made to improve the stability, solubility and, most of all, the bioavailability
of curcumin. An adopted strategy has been the achievement of derivatives of curcumin by chemical
modifications or chemical synthesis of its analogues. Since the key sites of the molecule for the
anti-tumor activity seemed to be the oxyphenyl and carbon chain moieties, many studies have
focused on chemically changing the abovementioned key sites, obtaining very promising results [127].
Though curcumin analogues represent a good approach to improving the bioavailability of curcumin,
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many studies have been directed towards the development of innovative delivery systems for improving
the pharmacokinetics of curcumin. Curcumin encapsulated in protein nanoparticles exhibited a better
anticancer activity, detectable by the loss of MCF-7 cells’ viability and an enhanced oral bioavailability
in rats [128].

Two promising nanocurcumin formulations, Lipocurc™ (liposomal curcumin for infusion) and
Meriva®, have been shown to increase the bioavailability of curcumin and lead to better treatment
outcomes in pancreatic and lymphocytic leukemia patients, respectively [129–131].

Relevant results have been achieved after oral administration of exosomal curcumin (ExoCUR,
a nanoformulation with curcumin mixed with exosomes from bovine milk) in Sprague–Dawley rats.
The ExoCur improved curcumin bioavailability as well as antiproliferative activity in multiple cancer
cell line models including breast, lung, and cervical cancer compared with the free curcumin, as well as
in in vivo for nude mice bearing the cervical CaSki tumor xenograft [132]. It is worth noting the study
by Antony et al. (2008), in which the patented formulation, BCM-95® CG (a mix of reconstituting
curcumin with the non-curcuminoid components of turmeric) was tested on a human group of
volunteers with the aim of estimating the bioavailability of curcumin in blood. The increase in relative
bioavailability of BCM-95® CG (BiocurcumaxTM) was about 6.93 fold compared to free curcumin and
about 6.3 fold compared to a curcumin–lecithin–piperine formula [133].

Although curcumin has shown poor bioavailability, due also to the fact of its chemical instability,
many in vivo studies, particularly preclinical studies, still focus on the therapeutic effects of curcumin,
though more large-scale trials including placebos are required for a deep evaluation of its effects
on humans.

Recent Advances

Clinical use of curcumin is still under investigation, both as a monotherapy and in combination
with other drugs. In a phase I clinical trial, curcumin was used alone in 15 colorectal cancer patients
as an oral formulation. The authors reported the absence of toxicity, the development of significant
diarrhea in two patients, and two patients showed stable disease after two months of curcumin
treatment [134]. An additional monotherapy clinical trial (phase II) of curcumin as an oral formulation
was performed in 25 advanced pancreatic cancer patients. Despite the low levels of curcumin present
in plasma (22–41 ng/mL) two patients showed clinical biological activity. Indeed, in one patient a stable
disease for >18 months was observed and in another patient, a brief but marked, tumor regression
(73%) was ascertained [90]. The assessment of curcumin mixed with other drugs as chemotherapeutic
or adjuvant to the standard treatments in cancer disease has been reported. The therapeutic effect
of a combination of curcumin with imatinib (tyrosine kinase inhibitor) has been evaluated in 50
chronic myeloid leukemia patients. The mixed treatment was more effective than imatinib alone,
although additional studies are needed to confirm the efficacy of the experimental combination [135].
Furthermore, a combination of curcumin with anti-EGFR monoclonal antibodies in pretreated cSCC
(cutaneous squamous cell carcinoma) patients has been described as a highly effective strategy in
disease control [136].

It is worth noting in the present review some of the most recent clinical trials on curcumin as a
therapeutic agent in various cancers (Table 2) (https://clinicaltrials.gov/).

https://clinicaltrials.gov/
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Table 2. The most recent clinical trials with curcumin.

Cancer Drug Title Clinical Trial
Number (NCT) Trial Phase Estimated Study

Completion Date

Breast

Curcumin
A “Window Trial” on Curcumin

for Invasive Breast Cancer
Primary Tumors

NCT03980509 I November, 2021

Curcumin® (CUC-01) with
paclitaxel

Study of Efficacy of Curcumin in
Combination With Chemotherapy

in Patients With Advanced
Breast Cancer

NCT03072992 II July, 2018

Prostate Curcumin

A Randomized, Double-Blind,
Placebo-Controlled Trial of

Curcumin to Prevent Progression
of Biopsy Proven, Low-risk

Localized Prostate Cancer Patients
Undergoing Active Surveillance

NCT03769766 III November, 2026

Cervical and
Uterine

Immunomodulatory cocktail
(Vitamin D, aspirin,

Cyclophosphamide and
Lansoprazole), pembrolizumab

and Curcumin

A Phase II Investigation of
Pembrolizumab (Keytruda) in

Combination With Radiation and
an Immune Modulatory Cocktail

in Patients With Cervical and
Uterine Cancer (PRIMMO Trial)

NCT03192059 II June, 2022

In breast cancer patients, curcumin is under investigation in monotherapy (NCT03980509) and in
combination with paclitaxel (NCT03072992). However, the aim of these clinical studies is to evaluate
the therapeutic effect of curcumin on the development of primary and metastatic breast cancer as well
as to estimate the risk of adverse events.

The use of curcumin against placebo in low-risk, localized prostate cancer patients is evaluated
with the aim to reduce cancer progression (NCT03769766).

The safety and tolerability of curcumin mixed with a drug called Lovaza (made with fish oils),
which reduces the size of lung nodules, is the subject of a phase II clinical trial (NCT03598309).
In another phase II clinical study, curcumin is under evaluation as a adjuvant (food supplement) in
patients with advanced and/or refractory cervical cancer, endometrial carcinoma or uterine sarcoma
treated with an immunomodulatory cocktail (Vitamin D, aspirin, cyclophosphamide and lansoprazole),
followed by pembrolizumab, combined with radiation (NCT03192059).

8. Conclusions

The search for new effective drugs able to combat cancer diseases still represents a challenge
for many scientists. Natural organisms (e.g., plants, bacteria, fungi) provide many active molecules
with a potential application in medicine for the management of many diseases (neurodegenerative,
cardiovascular, inflammation, cancers). Curcumin, a polyphenol extracted from the rhizomes of
Curcuma longa, belong to the most promising group of bioactive natural compounds, especially in the
treatment of several cancer types. As reported in the present review, curcumin exhibits anticancer
ability by targeting different cell signaling pathways including growth factors, cytokines, transcription
factors, and genes modulating cellular proliferation and apoptosis (Figure 1). However, curcumin
is not immune from side effects, such as nausea, diarrhea, headache, and yellow stool. Moreover,
it showed poor bioavailability due to the fact of low absorption, rapid metabolism, and systemic
elimination that limit its efficacy in diseases treatment. Further studies and clinical trials in humans
are needed to validate curcumin as an effective anticancer agent.
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